High b-value and diffusion tensor imaging in a canine model of dysmyelination and brain maturation

نویسندگان

  • Yu-Chien Wu
  • Aaron S. Field
  • Ian D. Duncan
  • Alexey A. Samsonov
  • Yoichi Kondo
  • Dana Tudorascu
  • Andrew L. Alexander
چکیده

Recent studies in rodents have demonstrated that diffusion imaging is highly sensitive to differences in myelination. These studies suggest that demyelination/dysmyelination cause increases in the radial diffusivity from diffusion tensor imaging (DTI) measurements and decreases in the restricted diffusion component from high b-value diffusion-weighted imaging experiments. In this study, the shaking pup (sh pup), a canine model of dysmyelination, was studied on a clinical MRI scanner using a combination of conventional diffusion tensor imaging and high b-value diffusion-weighted imaging methods. Diffusion measurements were compared between control dogs and sh pups in the age range 3 months to 16 months, which is similar to the period of early childhood through adolescence in humans. The study revealed significant group differences in nearly all diffusion measures with the largest differences in the zero-displacement probability (Po) from high b-value DWI and the radial diffusivity from DTI, which are consistent with the observations from the published rodent studies. Age-related changes in Po, FA, mean diffusivity, radial diffusivity and axial diffusivity were observed in whole brain white matter for the control dogs, but not the sh pups. Regionally, age-related changes in the sh pup white matter were observed for Po, mean diffusivity and radial diffusivity in the internal capsule, which may be indicative of mild myelination. These studies demonstrate that DWI may be used to study myelin abnormalities and brain development in large animal models on clinical MRI scanners, which are more amenable to translation to human studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies

Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

Diffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index

Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 58 3  شماره 

صفحات  -

تاریخ انتشار 2011